Metamath Proof Explorer


Theorem sigagenss

Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here A . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Assertion sigagenss SsigAlgebraAAS𝛔AS

Proof

Step Hyp Ref Expression
1 ssexg ASSsigAlgebraAAV
2 1 ancoms SsigAlgebraAASAV
3 sigagenval AV𝛔A=ssigAlgebraA|As
4 2 3 syl SsigAlgebraAAS𝛔A=ssigAlgebraA|As
5 sseq2 s=SAsAS
6 5 intminss SsigAlgebraAASssigAlgebraA|AsS
7 4 6 eqsstrd SsigAlgebraAAS𝛔AS