Metamath Proof Explorer


Theorem sigagenss

Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here A . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Assertion sigagenss S sigAlgebra A A S 𝛔 A S

Proof

Step Hyp Ref Expression
1 ssexg A S S sigAlgebra A A V
2 1 ancoms S sigAlgebra A A S A V
3 sigagenval A V 𝛔 A = s sigAlgebra A | A s
4 2 3 syl S sigAlgebra A A S 𝛔 A = s sigAlgebra A | A s
5 sseq2 s = S A s A S
6 5 intminss S sigAlgebra A A S s sigAlgebra A | A s S
7 4 6 eqsstrd S sigAlgebra A A S 𝛔 A S