Metamath Proof Explorer


Theorem sigariz

Description: If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sigarimcd.sigar G=x,yxy
sigarimcd.a φAB
sigariz.a φAGB=0
Assertion sigariz φBGA=0

Proof

Step Hyp Ref Expression
1 sigarimcd.sigar G=x,yxy
2 sigarimcd.a φAB
3 sigariz.a φAGB=0
4 1 sigarac ABAGB=BGA
5 2 4 syl φAGB=BGA
6 3 5 eqtr3d φ0=BGA
7 6 negeqd φ0=BGA
8 neg0 0=0
9 8 a1i φ0=0
10 2 ancomd φBA
11 1 10 sigarimcd φBGA
12 11 negnegd φBGA=BGA
13 7 9 12 3eqtr3rd φBGA=0