Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Descartes's rule of signs
Counting sign changes in a word over real numbers
signstfval
Next ⟩
signstcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
signstfval
Description:
Value of the zero-skipping sign word.
(Contributed by
Thierry Arnoux
, 8-Oct-2018)
Ref
Expression
Hypotheses
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
Assertion
signstfval
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
→
T
⁡
F
⁡
N
=
∑
W
i
=
0
N
sgn
⁡
F
⁡
i
Proof
Step
Hyp
Ref
Expression
1
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
2
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
3
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
4
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
5
1
2
3
4
signstfv
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
6
5
adantr
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
→
T
⁡
F
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
7
simpr
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
∧
n
=
N
→
n
=
N
8
7
oveq2d
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
∧
n
=
N
→
0
…
n
=
0
…
N
9
8
mpteq1d
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
∧
n
=
N
→
i
∈
0
…
n
⟼
sgn
⁡
F
⁡
i
=
i
∈
0
…
N
⟼
sgn
⁡
F
⁡
i
10
9
oveq2d
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
∧
n
=
N
→
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
=
∑
W
i
=
0
N
sgn
⁡
F
⁡
i
11
simpr
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
→
N
∈
0
..^
F
12
ovexd
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
→
∑
W
i
=
0
N
sgn
⁡
F
⁡
i
∈
V
13
6
10
11
12
fvmptd
⊢
F
∈
Word
ℝ
∧
N
∈
0
..^
F
→
T
⁡
F
⁡
N
=
∑
W
i
=
0
N
sgn
⁡
F
⁡
i