Metamath Proof Explorer


Theorem signstfval

Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstfval F Word N 0 ..^ F T F N = W i = 0 N sgn F i

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 1 2 3 4 signstfv F Word T F = n 0 ..^ F W i = 0 n sgn F i
6 5 adantr F Word N 0 ..^ F T F = n 0 ..^ F W i = 0 n sgn F i
7 simpr F Word N 0 ..^ F n = N n = N
8 7 oveq2d F Word N 0 ..^ F n = N 0 n = 0 N
9 8 mpteq1d F Word N 0 ..^ F n = N i 0 n sgn F i = i 0 N sgn F i
10 9 oveq2d F Word N 0 ..^ F n = N W i = 0 n sgn F i = W i = 0 N sgn F i
11 simpr F Word N 0 ..^ F N 0 ..^ F
12 ovexd F Word N 0 ..^ F W i = 0 N sgn F i V
13 6 10 11 12 fvmptd F Word N 0 ..^ F T F N = W i = 0 N sgn F i