Metamath Proof Explorer


Theorem sinpim

Description: Sine of a number subtracted from _pi . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion sinpim A sin π A = sin A

Proof

Step Hyp Ref Expression
1 id A A
2 picn π
3 2 a1i A π
4 1 3 subcld A A π
5 sinneg A π sin A π = sin A π
6 4 5 syl A sin A π = sin A π
7 1 3 negsubdi2d A A π = π A
8 7 fveq2d A sin A π = sin π A
9 sincl A sin A
10 sinmpi A sin A π = sin A
11 10 eqcomd A sin A = sin A π
12 9 11 negcon1ad A sin A π = sin A
13 6 8 12 3eqtr3d A sin π A = sin A