Metamath Proof Explorer


Theorem slotresfo

Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses slotresfo.e E Fn V
slotresfo.v k A E k V
slotresfo.k b V K A
slotresfo.b b V b = E K
Assertion slotresfo E A : A onto V

Proof

Step Hyp Ref Expression
1 slotresfo.e E Fn V
2 slotresfo.v k A E k V
3 slotresfo.k b V K A
4 slotresfo.b b V b = E K
5 ssv A V
6 fnssres E Fn V A V E A Fn A
7 1 5 6 mp2an E A Fn A
8 fvres k A E A k = E k
9 8 2 eqeltrd k A E A k V
10 9 rgen k A E A k V
11 fnfvrnss E A Fn A k A E A k V ran E A V
12 7 10 11 mp2an ran E A V
13 df-f E A : A V E A Fn A ran E A V
14 7 12 13 mpbir2an E A : A V
15 fveq2 k = K E k = E K
16 15 eqeq2d k = K b = E k b = E K
17 16 3 4 rspcedvdw b V k A b = E k
18 8 eqeq2d k A b = E A k b = E k
19 18 rexbiia k A b = E A k k A b = E k
20 17 19 sylibr b V k A b = E A k
21 20 rgen b V k A b = E A k
22 dffo3 E A : A onto V E A : A V b V k A b = E A k
23 14 21 22 mpbir2an E A : A onto V