Metamath Proof Explorer


Theorem sltled

Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)

Ref Expression
Hypotheses sltled.1 φANo
sltled.2 φBNo
sltled.3 φA<sB
Assertion sltled φAsB

Proof

Step Hyp Ref Expression
1 sltled.1 φANo
2 sltled.2 φBNo
3 sltled.3 φA<sB
4 1 2 jca φANoBNo
5 sltasym ANoBNoA<sB¬B<sA
6 4 3 5 sylc φ¬B<sA
7 slenlt ANoBNoAsB¬B<sA
8 1 2 7 syl2anc φAsB¬B<sA
9 6 8 mpbird φAsB