Metamath Proof Explorer


Theorem smatcl

Description: Closure of the square submatrix: if M is a square matrix of dimension N with indices in ( 1 ... N ) , then a submatrix of M is of dimension ( N - 1 ) . (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smatcl.a A=1NMatR
smatcl.b B=BaseA
smatcl.c C=Base1N1MatR
smatcl.s S=KsubMat1ML
smatcl.n φN
smatcl.k φK1N
smatcl.l φL1N
smatcl.m φMB
Assertion smatcl φSC

Proof

Step Hyp Ref Expression
1 smatcl.a A=1NMatR
2 smatcl.b B=BaseA
3 smatcl.c C=Base1N1MatR
4 smatcl.s S=KsubMat1ML
5 smatcl.n φN
6 smatcl.k φK1N
7 smatcl.l φL1N
8 smatcl.m φMB
9 eqid BaseR=BaseR
10 1 9 2 matbas2i MBMBaseR1N×1N
11 8 10 syl φMBaseR1N×1N
12 4 5 5 6 7 11 smatrcl φSBaseR1N1×1N1
13 fzfi 1N1Fin
14 1 2 matrcl MB1NFinRV
15 14 simprd MBRV
16 8 15 syl φRV
17 eqid 1N1MatR=1N1MatR
18 17 9 matbas2 1N1FinRVBaseR1N1×1N1=Base1N1MatR
19 13 16 18 sylancr φBaseR1N1×1N1=Base1N1MatR
20 19 eleq2d φSBaseR1N1×1N1SBase1N1MatR
21 12 20 mpbid φSBase1N1MatR
22 21 3 eleqtrrdi φSC