Description: Closure of the square submatrix: if M is a square matrix of dimension N with indices in ( 1 ... N ) , then a submatrix of M is of dimension ( N - 1 ) . (Contributed by Thierry Arnoux, 19-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smatcl.a | |
|
smatcl.b | |
||
smatcl.c | |
||
smatcl.s | |
||
smatcl.n | |
||
smatcl.k | |
||
smatcl.l | |
||
smatcl.m | |
||
Assertion | smatcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smatcl.a | |
|
2 | smatcl.b | |
|
3 | smatcl.c | |
|
4 | smatcl.s | |
|
5 | smatcl.n | |
|
6 | smatcl.k | |
|
7 | smatcl.l | |
|
8 | smatcl.m | |
|
9 | eqid | |
|
10 | 1 9 2 | matbas2i | |
11 | 8 10 | syl | |
12 | 4 5 5 6 7 11 | smatrcl | |
13 | fzfi | |
|
14 | 1 2 | matrcl | |
15 | 14 | simprd | |
16 | 8 15 | syl | |
17 | eqid | |
|
18 | 17 9 | matbas2 | |
19 | 13 16 18 | sylancr | |
20 | 19 | eleq2d | |
21 | 12 20 | mpbid | |
22 | 21 3 | eleqtrrdi | |