Metamath Proof Explorer


Theorem smatcl

Description: Closure of the square submatrix: if M is a square matrix of dimension N with indices in ( 1 ... N ) , then a submatrix of M is of dimension ( N - 1 ) . (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smatcl.a A = 1 N Mat R
smatcl.b B = Base A
smatcl.c C = Base 1 N 1 Mat R
smatcl.s S = K subMat 1 M L
smatcl.n φ N
smatcl.k φ K 1 N
smatcl.l φ L 1 N
smatcl.m φ M B
Assertion smatcl φ S C

Proof

Step Hyp Ref Expression
1 smatcl.a A = 1 N Mat R
2 smatcl.b B = Base A
3 smatcl.c C = Base 1 N 1 Mat R
4 smatcl.s S = K subMat 1 M L
5 smatcl.n φ N
6 smatcl.k φ K 1 N
7 smatcl.l φ L 1 N
8 smatcl.m φ M B
9 eqid Base R = Base R
10 1 9 2 matbas2i M B M Base R 1 N × 1 N
11 8 10 syl φ M Base R 1 N × 1 N
12 4 5 5 6 7 11 smatrcl φ S Base R 1 N 1 × 1 N 1
13 fzfi 1 N 1 Fin
14 1 2 matrcl M B 1 N Fin R V
15 14 simprd M B R V
16 8 15 syl φ R V
17 eqid 1 N 1 Mat R = 1 N 1 Mat R
18 17 9 matbas2 1 N 1 Fin R V Base R 1 N 1 × 1 N 1 = Base 1 N 1 Mat R
19 13 16 18 sylancr φ Base R 1 N 1 × 1 N 1 = Base 1 N 1 Mat R
20 19 eleq2d φ S Base R 1 N 1 × 1 N 1 S Base 1 N 1 Mat R
21 12 20 mpbid φ S Base 1 N 1 Mat R
22 21 3 eleqtrrdi φ S C