Metamath Proof Explorer


Theorem smattl

Description: Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S=KsubMat1AL
smat.m φM
smat.n φN
smat.k φK1M
smat.l φL1N
smat.a φAB1M×1N
smattl.i φI1..^K
smattl.j φJ1..^L
Assertion smattl φISJ=IAJ

Proof

Step Hyp Ref Expression
1 smat.s S=KsubMat1AL
2 smat.m φM
3 smat.n φN
4 smat.k φK1M
5 smat.l φL1N
6 smat.a φAB1M×1N
7 smattl.i φI1..^K
8 smattl.j φJ1..^L
9 fzossnn 1..^K
10 9 7 sselid φI
11 fzossnn 1..^L
12 11 8 sselid φJ
13 elfzolt2 I1..^KI<K
14 7 13 syl φI<K
15 14 iftrued φifI<KII+1=I
16 elfzolt2 J1..^LJ<L
17 8 16 syl φJ<L
18 17 iftrued φifJ<LJJ+1=J
19 1 2 3 4 5 6 10 12 15 18 smatlem φISJ=IAJ