Metamath Proof Explorer


Theorem smffmptf

Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smffmptf.x xφ
smffmptf.a _xA
smffmptf.s φSSAlg
smffmptf.b φxABV
smffmptf.m φxABSMblFnS
Assertion smffmptf φxAB:A

Proof

Step Hyp Ref Expression
1 smffmptf.x xφ
2 smffmptf.a _xA
3 smffmptf.s φSSAlg
4 smffmptf.b φxABV
5 smffmptf.m φxABSMblFnS
6 eqid domxAB=domxAB
7 3 5 6 smff φxAB:domxAB
8 1 2 4 dmmpt1 φdomxAB=A
9 8 eqcomd φA=domxAB
10 9 feq2d φxAB:AxAB:domxAB
11 7 10 mpbird φxAB:A