Metamath Proof Explorer


Theorem smucl

Description: The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016)

Ref Expression
Assertion smucl A0B0AsmulB0

Proof

Step Hyp Ref Expression
1 simpl A0B0A0
2 simpr A0B0B0
3 eqid seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 1 2 3 smufval A0B0AsmulB=k0|kseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1k+1
5 ssrab2 k0|kseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1k+10
6 4 5 eqsstrdi A0B0AsmulB0