Metamath Proof Explorer


Theorem sn-addlid

Description: addlid without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion sn-addlid A0+A=A

Proof

Step Hyp Ref Expression
1 cnre AxyA=x+iy
2 0cnd AxyA=x+iy0
3 simp2l AxyA=x+iyx
4 3 recnd AxyA=x+iyx
5 ax-icn i
6 5 a1i AxyA=x+iyi
7 simp2r AxyA=x+iyy
8 7 recnd AxyA=x+iyy
9 6 8 mulcld AxyA=x+iyiy
10 2 4 9 addassd AxyA=x+iy0+x+iy=0+x+iy
11 readdlid x0+x=x
12 11 adantr xy0+x=x
13 12 3ad2ant2 AxyA=x+iy0+x=x
14 13 oveq1d AxyA=x+iy0+x+iy=x+iy
15 10 14 eqtr3d AxyA=x+iy0+x+iy=x+iy
16 simp3 AxyA=x+iyA=x+iy
17 16 oveq2d AxyA=x+iy0+A=0+x+iy
18 15 17 16 3eqtr4d AxyA=x+iy0+A=A
19 18 3exp AxyA=x+iy0+A=A
20 19 rexlimdvv AxyA=x+iy0+A=A
21 1 20 mpd A0+A=A