Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003) (Revised by AV, 17-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | snmapen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd | |
|
2 | snex | |
|
3 | 2 | a1i | |
4 | simpl | |
|
5 | 4 | a1d | |
6 | 2 | a1i | |
7 | 6 | anim1ci | |
8 | xpexg | |
|
9 | 7 8 | syl | |
10 | 9 | a1d | |
11 | velsn | |
|
12 | 11 | a1i | |
13 | elmapg | |
|
14 | 6 13 | sylan | |
15 | fconst2g | |
|
16 | 15 | adantr | |
17 | 14 16 | bitr2d | |
18 | 12 17 | anbi12d | |
19 | ancom | |
|
20 | 18 19 | bitr2di | |
21 | 1 3 5 10 20 | en2d | |