Metamath Proof Explorer


Theorem snmapen

Description: Set exponentiation: a singleton to any set is equinumerous to that singleton. (Contributed by NM, 17-Dec-2003) (Revised by AV, 17-Jul-2022)

Ref Expression
Assertion snmapen AVBWABA

Proof

Step Hyp Ref Expression
1 ovexd AVBWABV
2 snex AV
3 2 a1i AVBWAV
4 simpl AVBWAV
5 4 a1d AVBWxABAV
6 2 a1i AVAV
7 6 anim1ci AVBWBWAV
8 xpexg BWAVB×AV
9 7 8 syl AVBWB×AV
10 9 a1d AVBWyAB×AV
11 velsn yAy=A
12 11 a1i AVBWyAy=A
13 elmapg AVBWxABx:BA
14 6 13 sylan AVBWxABx:BA
15 fconst2g AVx:BAx=B×A
16 15 adantr AVBWx:BAx=B×A
17 14 16 bitr2d AVBWx=B×AxAB
18 12 17 anbi12d AVBWyAx=B×Ay=AxAB
19 ancom y=AxABxABy=A
20 18 19 bitr2di AVBWxABy=AyAx=B×A
21 1 3 5 10 20 en2d AVBWABA