Metamath Proof Explorer


Theorem snmlff

Description: The function F from snmlval is a mapping from positive integers to real numbers in the range [ 0 , 1 ] . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypothesis snmlff.f F = n k 1 n | A R k mod R = B n
Assertion snmlff F : 0 1

Proof

Step Hyp Ref Expression
1 snmlff.f F = n k 1 n | A R k mod R = B n
2 fzfid n 1 n Fin
3 ssrab2 k 1 n | A R k mod R = B 1 n
4 ssfi 1 n Fin k 1 n | A R k mod R = B 1 n k 1 n | A R k mod R = B Fin
5 2 3 4 sylancl n k 1 n | A R k mod R = B Fin
6 hashcl k 1 n | A R k mod R = B Fin k 1 n | A R k mod R = B 0
7 5 6 syl n k 1 n | A R k mod R = B 0
8 7 nn0red n k 1 n | A R k mod R = B
9 nndivre k 1 n | A R k mod R = B n k 1 n | A R k mod R = B n
10 8 9 mpancom n k 1 n | A R k mod R = B n
11 7 nn0ge0d n 0 k 1 n | A R k mod R = B
12 nnre n n
13 nngt0 n 0 < n
14 divge0 k 1 n | A R k mod R = B 0 k 1 n | A R k mod R = B n 0 < n 0 k 1 n | A R k mod R = B n
15 8 11 12 13 14 syl22anc n 0 k 1 n | A R k mod R = B n
16 ssdomg 1 n Fin k 1 n | A R k mod R = B 1 n k 1 n | A R k mod R = B 1 n
17 2 3 16 mpisyl n k 1 n | A R k mod R = B 1 n
18 hashdom k 1 n | A R k mod R = B Fin 1 n Fin k 1 n | A R k mod R = B 1 n k 1 n | A R k mod R = B 1 n
19 5 2 18 syl2anc n k 1 n | A R k mod R = B 1 n k 1 n | A R k mod R = B 1 n
20 17 19 mpbird n k 1 n | A R k mod R = B 1 n
21 nnnn0 n n 0
22 hashfz1 n 0 1 n = n
23 21 22 syl n 1 n = n
24 20 23 breqtrd n k 1 n | A R k mod R = B n
25 nncn n n
26 25 mulid1d n n 1 = n
27 24 26 breqtrrd n k 1 n | A R k mod R = B n 1
28 1red n 1
29 ledivmul k 1 n | A R k mod R = B 1 n 0 < n k 1 n | A R k mod R = B n 1 k 1 n | A R k mod R = B n 1
30 8 28 12 13 29 syl112anc n k 1 n | A R k mod R = B n 1 k 1 n | A R k mod R = B n 1
31 27 30 mpbird n k 1 n | A R k mod R = B n 1
32 elicc01 k 1 n | A R k mod R = B n 0 1 k 1 n | A R k mod R = B n 0 k 1 n | A R k mod R = B n k 1 n | A R k mod R = B n 1
33 10 15 31 32 syl3anbrc n k 1 n | A R k mod R = B n 0 1
34 1 33 fmpti F : 0 1