Step |
Hyp |
Ref |
Expression |
1 |
|
snmlff.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ) |
2 |
|
fzfid |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) |
3 |
|
ssrab2 |
⊢ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ⊆ ( 1 ... 𝑛 ) |
4 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ⊆ ( 1 ... 𝑛 ) ) → { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ∈ Fin ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝑛 ∈ ℕ → { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ∈ Fin ) |
6 |
|
hashcl |
⊢ ( { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ∈ ℕ0 ) |
7 |
5 6
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ∈ ℕ0 ) |
8 |
7
|
nn0red |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ∈ ℝ ) |
9 |
|
nndivre |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ∈ ℝ ) |
10 |
8 9
|
mpancom |
⊢ ( 𝑛 ∈ ℕ → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ∈ ℝ ) |
11 |
7
|
nn0ge0d |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ) |
12 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
13 |
|
nngt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) |
14 |
|
divge0 |
⊢ ( ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → 0 ≤ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ) |
15 |
8 11 12 13 14
|
syl22anc |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ) |
16 |
|
ssdomg |
⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ⊆ ( 1 ... 𝑛 ) → { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ≼ ( 1 ... 𝑛 ) ) ) |
17 |
2 3 16
|
mpisyl |
⊢ ( 𝑛 ∈ ℕ → { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ≼ ( 1 ... 𝑛 ) ) |
18 |
|
hashdom |
⊢ ( ( { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ≼ ( 1 ... 𝑛 ) ) ) |
19 |
5 2 18
|
syl2anc |
⊢ ( 𝑛 ∈ ℕ → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ≼ ( 1 ... 𝑛 ) ) ) |
20 |
17 19
|
mpbird |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
21 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
22 |
|
hashfz1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
23 |
21 22
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
24 |
20 23
|
breqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ 𝑛 ) |
25 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
26 |
25
|
mulid1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 1 ) = 𝑛 ) |
27 |
24 26
|
breqtrrd |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ ( 𝑛 · 1 ) ) |
28 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
29 |
|
ledivmul |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ≤ 1 ↔ ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ ( 𝑛 · 1 ) ) ) |
30 |
8 28 12 13 29
|
syl112anc |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ≤ 1 ↔ ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) ≤ ( 𝑛 · 1 ) ) ) |
31 |
27 30
|
mpbird |
⊢ ( 𝑛 ∈ ℕ → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ≤ 1 ) |
32 |
|
elicc01 |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ∈ ( 0 [,] 1 ) ↔ ( ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ∧ ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ≤ 1 ) ) |
33 |
10 15 31 32
|
syl3anbrc |
⊢ ( 𝑛 ∈ ℕ → ( ( ♯ ‘ { 𝑘 ∈ ( 1 ... 𝑛 ) ∣ ( ⌊ ‘ ( ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) mod 𝑅 ) ) = 𝐵 } ) / 𝑛 ) ∈ ( 0 [,] 1 ) ) |
34 |
1 33
|
fmpti |
⊢ 𝐹 : ℕ ⟶ ( 0 [,] 1 ) |