| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snmlff.f | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 ) ) | 
						
							| 2 |  | fzfid | ⊢ ( 𝑛  ∈  ℕ  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ⊆  ( 1 ... 𝑛 ) | 
						
							| 4 |  | ssfi | ⊢ ( ( ( 1 ... 𝑛 )  ∈  Fin  ∧  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ⊆  ( 1 ... 𝑛 ) )  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ∈  Fin ) | 
						
							| 5 | 2 3 4 | sylancl | ⊢ ( 𝑛  ∈  ℕ  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ∈  Fin ) | 
						
							| 6 |  | hashcl | ⊢ ( { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ∈  Fin  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ∈  ℕ0 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0red | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ∈  ℝ ) | 
						
							| 9 |  | nndivre | ⊢ ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ∈  ℝ ) | 
						
							| 10 | 8 9 | mpancom | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ∈  ℝ ) | 
						
							| 11 | 7 | nn0ge0d | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } ) ) | 
						
							| 12 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 13 |  | nngt0 | ⊢ ( 𝑛  ∈  ℕ  →  0  <  𝑛 ) | 
						
							| 14 |  | divge0 | ⊢ ( ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } ) )  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  0  ≤  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 ) ) | 
						
							| 15 | 8 11 12 13 14 | syl22anc | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 ) ) | 
						
							| 16 |  | ssdomg | ⊢ ( ( 1 ... 𝑛 )  ∈  Fin  →  ( { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ⊆  ( 1 ... 𝑛 )  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ≼  ( 1 ... 𝑛 ) ) ) | 
						
							| 17 | 2 3 16 | mpisyl | ⊢ ( 𝑛  ∈  ℕ  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ≼  ( 1 ... 𝑛 ) ) | 
						
							| 18 |  | hashdom | ⊢ ( ( { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ∈  Fin  ∧  ( 1 ... 𝑛 )  ∈  Fin )  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  ( ♯ ‘ ( 1 ... 𝑛 ) )  ↔  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ≼  ( 1 ... 𝑛 ) ) ) | 
						
							| 19 | 5 2 18 | syl2anc | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  ( ♯ ‘ ( 1 ... 𝑛 ) )  ↔  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 }  ≼  ( 1 ... 𝑛 ) ) ) | 
						
							| 20 | 17 19 | mpbird | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  ( ♯ ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 21 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 22 |  | hashfz1 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑛 ) )  =  𝑛 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ ( 1 ... 𝑛 ) )  =  𝑛 ) | 
						
							| 24 | 20 23 | breqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  𝑛 ) | 
						
							| 25 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 26 | 25 | mulridd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  1 )  =  𝑛 ) | 
						
							| 27 | 24 26 | breqtrrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  ( 𝑛  ·  1 ) ) | 
						
							| 28 |  | 1red | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 29 |  | ledivmul | ⊢ ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ≤  1  ↔  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  ( 𝑛  ·  1 ) ) ) | 
						
							| 30 | 8 28 12 13 29 | syl112anc | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ≤  1  ↔  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  ≤  ( 𝑛  ·  1 ) ) ) | 
						
							| 31 | 27 30 | mpbird | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ≤  1 ) | 
						
							| 32 |  | elicc01 | ⊢ ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ∈  ( 0 [,] 1 )  ↔  ( ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ∧  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ≤  1 ) ) | 
						
							| 33 | 10 15 31 32 | syl3anbrc | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 34 | 1 33 | fmpti | ⊢ 𝐹 : ℕ ⟶ ( 0 [,] 1 ) |