Metamath Proof Explorer


Theorem snopfsupp

Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019)

Ref Expression
Assertion snopfsupp XVYWZUfinSuppZXY

Proof

Step Hyp Ref Expression
1 snfi XFin
2 snopsuppss XYsuppZX
3 1 2 pm3.2i XFinXYsuppZX
4 ssfi XFinXYsuppZXXYsuppZFin
5 3 4 mp1i XVYWZUXYsuppZFin
6 funsng XVYWFunXY
7 6 3adant3 XVYWZUFunXY
8 snex XYV
9 8 a1i XVYWZUXYV
10 simp3 XVYWZUZU
11 funisfsupp FunXYXYVZUfinSuppZXYXYsuppZFin
12 7 9 10 11 syl3anc XVYWZUfinSuppZXYXYsuppZFin
13 5 12 mpbird XVYWZUfinSuppZXY