Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sorpssint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 | |
|
2 | 1 | 3ad2ant2 | |
3 | sorpssi | |
|
4 | 3 | anassrs | |
5 | sspss | |
|
6 | orel1 | |
|
7 | eqimss2 | |
|
8 | 6 7 | syl6com | |
9 | 5 8 | sylbi | |
10 | 9 | jao1i | |
11 | 4 10 | syl | |
12 | 11 | ralimdva | |
13 | 12 | 3impia | |
14 | ssint | |
|
15 | 13 14 | sylibr | |
16 | 2 15 | eqssd | |
17 | simp2 | |
|
18 | 16 17 | eqeltrd | |
19 | 18 | rexlimdv3a | |
20 | intss1 | |
|
21 | ssnpss | |
|
22 | 20 21 | syl | |
23 | 22 | rgen | |
24 | psseq2 | |
|
25 | 24 | notbid | |
26 | 25 | ralbidv | |
27 | 26 | rspcev | |
28 | 23 27 | mpan2 | |
29 | 19 28 | impbid1 | |