Metamath Proof Explorer


Theorem sorpssint

Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssint [⊂]OrYuYvY¬vuYY

Proof

Step Hyp Ref Expression
1 intss1 uYYu
2 1 3ad2ant2 [⊂]OrYuYvY¬vuYu
3 sorpssi [⊂]OrYuYvYuvvu
4 3 anassrs [⊂]OrYuYvYuvvu
5 sspss vuvuv=u
6 orel1 ¬vuvuv=uv=u
7 eqimss2 v=uuv
8 6 7 syl6com vuv=u¬vuuv
9 5 8 sylbi vu¬vuuv
10 9 jao1i uvvu¬vuuv
11 4 10 syl [⊂]OrYuYvY¬vuuv
12 11 ralimdva [⊂]OrYuYvY¬vuvYuv
13 12 3impia [⊂]OrYuYvY¬vuvYuv
14 ssint uYvYuv
15 13 14 sylibr [⊂]OrYuYvY¬vuuY
16 2 15 eqssd [⊂]OrYuYvY¬vuY=u
17 simp2 [⊂]OrYuYvY¬vuuY
18 16 17 eqeltrd [⊂]OrYuYvY¬vuYY
19 18 rexlimdv3a [⊂]OrYuYvY¬vuYY
20 intss1 vYYv
21 ssnpss Yv¬vY
22 20 21 syl vY¬vY
23 22 rgen vY¬vY
24 psseq2 u=YvuvY
25 24 notbid u=Y¬vu¬vY
26 25 ralbidv u=YvY¬vuvY¬vY
27 26 rspcev YYvY¬vYuYvY¬vu
28 23 27 mpan2 YYuYvY¬vu
29 19 28 impbid1 [⊂]OrYuYvY¬vuYY