Description: The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sorpsscmpl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 | |
|
2 | 1 | eleq1d | |
3 | 2 | elrab | |
4 | difeq2 | |
|
5 | 4 | eleq1d | |
6 | 5 | elrab | |
7 | an4 | |
|
8 | 7 | biimpi | |
9 | 3 6 8 | syl2anb | |
10 | sorpssi | |
|
11 | 10 | expcom | |
12 | velpw | |
|
13 | dfss4 | |
|
14 | 12 13 | bitri | |
15 | velpw | |
|
16 | dfss4 | |
|
17 | 15 16 | bitri | |
18 | sscon | |
|
19 | sseq12 | |
|
20 | 18 19 | imbitrid | |
21 | sscon | |
|
22 | sseq12 | |
|
23 | 22 | ancoms | |
24 | 21 23 | imbitrid | |
25 | 20 24 | orim12d | |
26 | 14 17 25 | syl2anb | |
27 | 26 | com12 | |
28 | 27 | orcoms | |
29 | 11 28 | syl6 | |
30 | 29 | com3l | |
31 | 30 | impd | |
32 | 9 31 | syl5 | |
33 | 32 | ralrimivv | |
34 | sorpss | |
|
35 | 33 34 | sylibr | |