Metamath Proof Explorer


Theorem sorpsscmpl

Description: The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpsscmpl [⊂]OrY[⊂]Oru𝒫A|AuY

Proof

Step Hyp Ref Expression
1 difeq2 u=xAu=Ax
2 1 eleq1d u=xAuYAxY
3 2 elrab xu𝒫A|AuYx𝒫AAxY
4 difeq2 u=yAu=Ay
5 4 eleq1d u=yAuYAyY
6 5 elrab yu𝒫A|AuYy𝒫AAyY
7 an4 x𝒫AAxYy𝒫AAyYx𝒫Ay𝒫AAxYAyY
8 7 biimpi x𝒫AAxYy𝒫AAyYx𝒫Ay𝒫AAxYAyY
9 3 6 8 syl2anb xu𝒫A|AuYyu𝒫A|AuYx𝒫Ay𝒫AAxYAyY
10 sorpssi [⊂]OrYAxYAyYAxAyAyAx
11 10 expcom AxYAyY[⊂]OrYAxAyAyAx
12 velpw x𝒫AxA
13 dfss4 xAAAx=x
14 12 13 bitri x𝒫AAAx=x
15 velpw y𝒫AyA
16 dfss4 yAAAy=y
17 15 16 bitri y𝒫AAAy=y
18 sscon AyAxAAxAAy
19 sseq12 AAx=xAAy=yAAxAAyxy
20 18 19 imbitrid AAx=xAAy=yAyAxxy
21 sscon AxAyAAyAAx
22 sseq12 AAy=yAAx=xAAyAAxyx
23 22 ancoms AAx=xAAy=yAAyAAxyx
24 21 23 imbitrid AAx=xAAy=yAxAyyx
25 20 24 orim12d AAx=xAAy=yAyAxAxAyxyyx
26 14 17 25 syl2anb x𝒫Ay𝒫AAyAxAxAyxyyx
27 26 com12 AyAxAxAyx𝒫Ay𝒫Axyyx
28 27 orcoms AxAyAyAxx𝒫Ay𝒫Axyyx
29 11 28 syl6 AxYAyY[⊂]OrYx𝒫Ay𝒫Axyyx
30 29 com3l [⊂]OrYx𝒫Ay𝒫AAxYAyYxyyx
31 30 impd [⊂]OrYx𝒫Ay𝒫AAxYAyYxyyx
32 9 31 syl5 [⊂]OrYxu𝒫A|AuYyu𝒫A|AuYxyyx
33 32 ralrimivv [⊂]OrYxu𝒫A|AuYyu𝒫A|AuYxyyx
34 sorpss [⊂]Oru𝒫A|AuYxu𝒫A|AuYyu𝒫A|AuYxyyx
35 33 34 sylibr [⊂]OrY[⊂]Oru𝒫A|AuY