Metamath Proof Explorer


Theorem sqrtmul

Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion sqrtmul A0AB0BAB=AB

Proof

Step Hyp Ref Expression
1 simpll A0AB0BA
2 simprl A0AB0BB
3 1 2 remulcld A0AB0BAB
4 mulge0 A0AB0B0AB
5 resqrtcl AB0ABAB
6 3 4 5 syl2anc A0AB0BAB
7 resqrtcl A0AA
8 7 adantr A0AB0BA
9 resqrtcl B0BB
10 9 adantl A0AB0BB
11 8 10 remulcld A0AB0BAB
12 sqrtge0 AB0AB0AB
13 3 4 12 syl2anc A0AB0B0AB
14 sqrtge0 A0A0A
15 14 adantr A0AB0B0A
16 sqrtge0 B0B0B
17 16 adantl A0AB0B0B
18 8 10 15 17 mulge0d A0AB0B0AB
19 resqrtth A0AA2=A
20 resqrtth B0BB2=B
21 19 20 oveqan12d A0AB0BA2B2=AB
22 8 recnd A0AB0BA
23 10 recnd A0AB0BB
24 22 23 sqmuld A0AB0BAB2=A2B2
25 resqrtth AB0ABAB2=AB
26 3 4 25 syl2anc A0AB0BAB2=AB
27 21 24 26 3eqtr4rd A0AB0BAB2=AB2
28 6 11 13 18 27 sq11d A0AB0BAB=AB