Metamath Proof Explorer


Theorem sraring

Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses sraring.1 A = subringAlg R V
sraring.2 B = Base R
Assertion sraring R Ring V B A Ring

Proof

Step Hyp Ref Expression
1 sraring.1 A = subringAlg R V
2 sraring.2 B = Base R
3 2 a1i V B B = Base R
4 1 a1i V B A = subringAlg R V
5 id V B V B
6 5 2 sseqtrdi V B V Base R
7 4 6 srabase V B Base R = Base A
8 2 7 syl5eq V B B = Base A
9 4 6 sraaddg V B + R = + A
10 9 oveqdr V B x B y B x + R y = x + A y
11 4 6 sramulr V B R = A
12 11 oveqdr V B x B y B x R y = x A y
13 3 8 10 12 ringpropd V B R Ring A Ring
14 13 biimpac R Ring V B A Ring