Metamath Proof Explorer


Theorem sraring

Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses sraring.1 A=subringAlgRV
sraring.2 B=BaseR
Assertion sraring RRingVBARing

Proof

Step Hyp Ref Expression
1 sraring.1 A=subringAlgRV
2 sraring.2 B=BaseR
3 2 a1i VBB=BaseR
4 1 a1i VBA=subringAlgRV
5 id VBVB
6 5 2 sseqtrdi VBVBaseR
7 4 6 srabase VBBaseR=BaseA
8 2 7 eqtrid VBB=BaseA
9 4 6 sraaddg VB+R=+A
10 9 oveqdr VBxByBx+Ry=x+Ay
11 4 6 sramulr VBR=A
12 11 oveqdr VBxByBxRy=xAy
13 3 8 10 12 ringpropd VBRRingARing
14 13 biimpac RRingVBARing