Metamath Proof Explorer


Theorem srasubrg

Description: A subring of the original structure is also a subring of the constructed subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses srasubrg.a φA=subringAlgWS
srasubrg.u φUSubRingW
srasubrg.s φSBaseW
Assertion srasubrg φUSubRingA

Proof

Step Hyp Ref Expression
1 srasubrg.a φA=subringAlgWS
2 srasubrg.u φUSubRingW
3 srasubrg.s φSBaseW
4 eqidd φBaseW=BaseW
5 1 3 srabase φBaseW=BaseA
6 1 3 sraaddg φ+W=+A
7 6 oveqdr φxBaseWyBaseWx+Wy=x+Ay
8 1 3 sramulr φW=A
9 8 oveqdr φxBaseWyBaseWxWy=xAy
10 4 5 7 9 subrgpropd φSubRingW=SubRingA
11 2 10 eleqtrd φUSubRingA