Metamath Proof Explorer


Theorem srhmsubcALTVlem2

Description: Lemma 2 for srhmsubcALTV . (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s rSrRing
srhmsubcALTV.c C=US
srhmsubcALTV.j J=rC,sCrRingHoms
Assertion srhmsubcALTVlem2 UVXCYCXJY=XHomRingCatALTVUY

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s rSrRing
2 srhmsubcALTV.c C=US
3 srhmsubcALTV.j J=rC,sCrRingHoms
4 3 a1i UVXCYCJ=rC,sCrRingHoms
5 oveq12 r=Xs=YrRingHoms=XRingHomY
6 5 adantl UVXCYCr=Xs=YrRingHoms=XRingHomY
7 simpl XCYCXC
8 7 adantl UVXCYCXC
9 simpr XCYCYC
10 9 adantl UVXCYCYC
11 ovexd UVXCYCXRingHomYV
12 4 6 8 10 11 ovmpod UVXCYCXJY=XRingHomY
13 eqid RingCatALTVU=RingCatALTVU
14 eqid BaseRingCatALTVU=BaseRingCatALTVU
15 simpl UVXCYCUV
16 eqid HomRingCatALTVU=HomRingCatALTVU
17 1 2 srhmsubcALTVlem1 UVXCXBaseRingCatALTVU
18 7 17 sylan2 UVXCYCXBaseRingCatALTVU
19 1 2 srhmsubcALTVlem1 UVYCYBaseRingCatALTVU
20 9 19 sylan2 UVXCYCYBaseRingCatALTVU
21 13 14 15 16 18 20 ringchomALTV UVXCYCXHomRingCatALTVUY=XRingHomY
22 12 21 eqtr4d UVXCYCXJY=XHomRingCatALTVUY