Metamath Proof Explorer


Theorem ssdomfi2

Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion ssdomfi2 A Fin B V A B A B

Proof

Step Hyp Ref Expression
1 f1oi I A : A 1-1 onto A
2 f1of1 I A : A 1-1 onto A I A : A 1-1 A
3 1 2 ax-mp I A : A 1-1 A
4 f1ss I A : A 1-1 A A B I A : A 1-1 B
5 3 4 mpan A B I A : A 1-1 B
6 f1domfi2 A Fin B V I A : A 1-1 B A B
7 5 6 syl3an3 A Fin B V A B A B