Metamath Proof Explorer


Theorem sseliALT

Description: Alternate proof of sseli illustrating the use of the weak deduction theorem to prove it from the inference sselii . (Contributed by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sseliALT.1 AB
Assertion sseliALT CACB

Proof

Step Hyp Ref Expression
1 sseliALT.1 AB
2 biidd A=ifCAACBCB
3 eleq2 B=ifCABCBCifCAB
4 eleq1 C=ifCACCifCABifCACifCAB
5 sseq1 A=ifCAAABifCAAB
6 sseq2 B=ifCABifCAABifCAAifCAB
7 biidd C=ifCACifCAAifCABifCAAifCAB
8 sseq1 =ifCAAifCAA
9 sseq2 =ifCABifCAAifCAAifCAB
10 biidd =ifCACifCAAifCABifCAAifCAB
11 ssid
12 5 6 7 8 9 10 1 11 keephyp3v ifCAAifCAB
13 eleq2 A=ifCAACACifCAA
14 biidd B=ifCABCifCAACifCAA
15 eleq1 C=ifCACCifCAAifCACifCAA
16 eleq2 =ifCAAifCAA
17 biidd =ifCABifCAAifCAA
18 eleq1 =ifCACifCAAifCACifCAA
19 0ex V
20 19 snid
21 13 14 15 16 17 18 20 elimhyp3v ifCACifCAA
22 12 21 sselii ifCACifCAB
23 2 3 4 22 dedth3v CACB