Description: Alternate proof of sseli illustrating the use of the weak deduction theorem to prove it from the inference sselii . (Contributed by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sseliALT.1 | |
|
Assertion | sseliALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseliALT.1 | |
|
2 | biidd | |
|
3 | eleq2 | |
|
4 | eleq1 | |
|
5 | sseq1 | |
|
6 | sseq2 | |
|
7 | biidd | |
|
8 | sseq1 | |
|
9 | sseq2 | |
|
10 | biidd | |
|
11 | ssid | |
|
12 | 5 6 7 8 9 10 1 11 | keephyp3v | |
13 | eleq2 | |
|
14 | biidd | |
|
15 | eleq1 | |
|
16 | eleq2 | |
|
17 | biidd | |
|
18 | eleq1 | |
|
19 | 0ex | |
|
20 | 19 | snid | |
21 | 13 14 15 16 17 18 20 | elimhyp3v | |
22 | 12 21 | sselii | |
23 | 2 3 4 22 | dedth3v | |