Metamath Proof Explorer


Theorem ssltleft

Description: A surreal is greater than its left options. Theorem 0(ii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltleft Could not format assertion : No typesetting found for |- ( A e. No -> ( _Left ` A ) <

Proof

Step Hyp Ref Expression
1 fvexd Could not format ( A e. No -> ( _Left ` A ) e. _V ) : No typesetting found for |- ( A e. No -> ( _Left ` A ) e. _V ) with typecode |-
2 snex AV
3 2 a1i ANoAV
4 leftf Could not format _Left : No --> ~P No : No typesetting found for |- _Left : No --> ~P No with typecode |-
5 4 ffvelcdmi Could not format ( A e. No -> ( _Left ` A ) e. ~P No ) : No typesetting found for |- ( A e. No -> ( _Left ` A ) e. ~P No ) with typecode |-
6 5 elpwid Could not format ( A e. No -> ( _Left ` A ) C_ No ) : No typesetting found for |- ( A e. No -> ( _Left ` A ) C_ No ) with typecode |-
7 snssi ANoANo
8 velsn yAy=A
9 leftval Could not format ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x
10 9 a1i Could not format ( A e. No -> ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x
11 10 eleq2d Could not format ( A e. No -> ( x e. ( _Left ` A ) <-> x e. { x e. ( _Old ` ( bday ` A ) ) | x ( x e. ( _Left ` A ) <-> x e. { x e. ( _Old ` ( bday ` A ) ) | x
12 rabid xxOldbdayA|x<sAxOldbdayAx<sA
13 11 12 bitrdi Could not format ( A e. No -> ( x e. ( _Left ` A ) <-> ( x e. ( _Old ` ( bday ` A ) ) /\ x ( x e. ( _Left ` A ) <-> ( x e. ( _Old ` ( bday ` A ) ) /\ x
14 13 simplbda Could not format ( ( A e. No /\ x e. ( _Left ` A ) ) -> x x
15 breq2 y=Ax<syx<sA
16 14 15 imbitrrid Could not format ( y = A -> ( ( A e. No /\ x e. ( _Left ` A ) ) -> x ( ( A e. No /\ x e. ( _Left ` A ) ) -> x
17 16 expd Could not format ( y = A -> ( A e. No -> ( x e. ( _Left ` A ) -> x ( A e. No -> ( x e. ( _Left ` A ) -> x
18 8 17 sylbi Could not format ( y e. { A } -> ( A e. No -> ( x e. ( _Left ` A ) -> x ( A e. No -> ( x e. ( _Left ` A ) -> x
19 18 3imp231 Could not format ( ( A e. No /\ x e. ( _Left ` A ) /\ y e. { A } ) -> x x
20 1 3 6 7 19 ssltd Could not format ( A e. No -> ( _Left ` A ) < ( _Left ` A ) <