Metamath Proof Explorer


Theorem ssltsepc

Description: Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion ssltsepc AsBXAYBX<sY

Proof

Step Hyp Ref Expression
1 ssltsep AsBxAyBx<sy
2 breq1 x=Xx<syX<sy
3 breq2 y=YX<syX<sY
4 2 3 rspc2va XAYBxAyBx<syX<sY
5 4 ancoms xAyBx<syXAYBX<sY
6 1 5 sylan AsBXAYBX<sY
7 6 3impb AsBXAYBX<sY