Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1 φANo
ssltsn.2 φBNo
ssltsn.3 φA<sB
Assertion ssltsn φAsB

Proof

Step Hyp Ref Expression
1 ssltsn.1 φANo
2 ssltsn.2 φBNo
3 ssltsn.3 φA<sB
4 snex AV
5 4 a1i φAV
6 snex BV
7 6 a1i φBV
8 1 snssd φANo
9 2 snssd φBNo
10 velsn xAx=A
11 velsn yBy=B
12 breq12 x=Ay=Bx<syA<sB
13 10 11 12 syl2anb xAyBx<syA<sB
14 3 13 syl5ibrcom φxAyBx<sy
15 14 3impib φxAyBx<sy
16 5 7 8 9 15 ssltd φAsB