Metamath Proof Explorer


Theorem ssnnfi

Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998) (Proof shortened by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion ssnnfi AωBABFin

Proof

Step Hyp Ref Expression
1 sspss BABAB=A
2 pssnn AωBAxABx
3 elnn xAAωxω
4 3 expcom AωxAxω
5 4 anim1d AωxABxxωBx
6 5 reximdv2 AωxABxxωBx
7 6 adantr AωBAxABxxωBx
8 2 7 mpd AωBAxωBx
9 isfi BFinxωBx
10 8 9 sylibr AωBABFin
11 eleq1 B=ABωAω
12 11 biimparc AωB=ABω
13 nnfi BωBFin
14 12 13 syl AωB=ABFin
15 10 14 jaodan AωBAB=ABFin
16 1 15 sylan2b AωBABFin