Metamath Proof Explorer


Theorem ssnnfiOLD

Description: Obsolete version of ssnnfi as of 23-Sep-2024. (Contributed by NM, 24-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ssnnfiOLD AωBABFin

Proof

Step Hyp Ref Expression
1 sspss BABAB=A
2 pssnn AωBAxABx
3 elnn xAAωxω
4 3 expcom AωxAxω
5 4 anim1d AωxABxxωBx
6 5 reximdv2 AωxABxxωBx
7 6 adantr AωBAxABxxωBx
8 2 7 mpd AωBAxωBx
9 eleq1 B=ABωAω
10 9 biimparc AωB=ABω
11 enrefnn BωBB
12 breq2 x=BBxBB
13 12 rspcev BωBBxωBx
14 10 11 13 syl2anc2 AωB=AxωBx
15 8 14 jaodan AωBAB=AxωBx
16 1 15 sylan2b AωBAxωBx
17 isfi BFinxωBx
18 16 17 sylibr AωBABFin