Metamath Proof Explorer


Theorem ssref

Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses ssref.1 X=A
ssref.2 Y=B
Assertion ssref ACABX=YARefB

Proof

Step Hyp Ref Expression
1 ssref.1 X=A
2 ssref.2 Y=B
3 eqcom X=YY=X
4 3 biimpi X=YY=X
5 4 3ad2ant3 ACABX=YY=X
6 ssel2 ABxAxB
7 6 3ad2antl2 ACABX=YxAxB
8 ssid xx
9 sseq2 y=xxyxx
10 9 rspcev xBxxyBxy
11 7 8 10 sylancl ACABX=YxAyBxy
12 11 ralrimiva ACABX=YxAyBxy
13 1 2 isref ACARefBY=XxAyBxy
14 13 3ad2ant1 ACABX=YARefBY=XxAyBxy
15 5 12 14 mpbir2and ACABX=YARefB