Metamath Proof Explorer


Theorem ssref

Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses ssref.1 X = A
ssref.2 Y = B
Assertion ssref A C A B X = Y A Ref B

Proof

Step Hyp Ref Expression
1 ssref.1 X = A
2 ssref.2 Y = B
3 eqcom X = Y Y = X
4 3 biimpi X = Y Y = X
5 4 3ad2ant3 A C A B X = Y Y = X
6 ssel2 A B x A x B
7 6 3ad2antl2 A C A B X = Y x A x B
8 ssid x x
9 sseq2 y = x x y x x
10 9 rspcev x B x x y B x y
11 7 8 10 sylancl A C A B X = Y x A y B x y
12 11 ralrimiva A C A B X = Y x A y B x y
13 1 2 isref A C A Ref B Y = X x A y B x y
14 13 3ad2ant1 A C A B X = Y A Ref B Y = X x A y B x y
15 5 12 14 mpbir2and A C A B X = Y A Ref B