Metamath Proof Explorer


Theorem sssigagen

Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Assertion sssigagen AVA𝛔A

Proof

Step Hyp Ref Expression
1 ssintub AssigAlgebraA|As
2 sigagenval AV𝛔A=ssigAlgebraA|As
3 1 2 sseqtrrid AVA𝛔A