Metamath Proof Explorer


Theorem sssigagen

Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Assertion sssigagen A V A 𝛔 A

Proof

Step Hyp Ref Expression
1 ssintub A s sigAlgebra A | A s
2 sigagenval A V 𝛔 A = s sigAlgebra A | A s
3 1 2 sseqtrrid A V A 𝛔 A