Metamath Proof Explorer


Theorem stgr1

Description: The star graph S_1 consists of a single simple edge. (Contributed by AV, 11-Sep-2025)

Ref Expression
Assertion stgr1 Could not format assertion : No typesetting found for |- ( StarGr ` 1 ) = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( .ef ` ndx ) , ( _I |` { { 0 , 1 } } ) >. } with typecode |-

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 stgrfv Could not format ( 1 e. NN0 -> ( StarGr ` 1 ) = { <. ( Base ` ndx ) , ( 0 ... 1 ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... 1 ) | E. x e. ( 1 ... 1 ) e = { 0 , x } } ) >. } ) : No typesetting found for |- ( 1 e. NN0 -> ( StarGr ` 1 ) = { <. ( Base ` ndx ) , ( 0 ... 1 ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... 1 ) | E. x e. ( 1 ... 1 ) e = { 0 , x } } ) >. } ) with typecode |-
3 1 2 ax-mp Could not format ( StarGr ` 1 ) = { <. ( Base ` ndx ) , ( 0 ... 1 ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... 1 ) | E. x e. ( 1 ... 1 ) e = { 0 , x } } ) >. } : No typesetting found for |- ( StarGr ` 1 ) = { <. ( Base ` ndx ) , ( 0 ... 1 ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... 1 ) | E. x e. ( 1 ... 1 ) e = { 0 , x } } ) >. } with typecode |-
4 fz01pr 0 1 = 0 1
5 4 opeq2i Base ndx 0 1 = Base ndx 0 1
6 elsni x 1 x = 1
7 preq2 x = 1 0 x = 0 1
8 7 eqeq2d x = 1 e = 0 x e = 0 1
9 8 biimpd x = 1 e = 0 x e = 0 1
10 6 9 syl x 1 e = 0 x e = 0 1
11 1z 1
12 fzsn 1 1 1 = 1
13 11 12 ax-mp 1 1 = 1
14 10 13 eleq2s x 1 1 e = 0 x e = 0 1
15 14 rexlimiv x 1 1 e = 0 x e = 0 1
16 15 adantl e 𝒫 0 1 x 1 1 e = 0 x e = 0 1
17 c0ex 0 V
18 17 prid1 0 0 1
19 18 4 eleqtrri 0 0 1
20 1ex 1 V
21 20 prid2 1 0 1
22 21 4 eleqtrri 1 0 1
23 prelpwi 0 0 1 1 0 1 0 1 𝒫 0 1
24 19 22 23 mp2an 0 1 𝒫 0 1
25 eqid 0 1 = 0 1
26 13 rexeqi x 1 1 0 1 = 0 x x 1 0 1 = 0 x
27 7 eqeq2d x = 1 0 1 = 0 x 0 1 = 0 1
28 20 27 rexsn x 1 0 1 = 0 x 0 1 = 0 1
29 26 28 bitri x 1 1 0 1 = 0 x 0 1 = 0 1
30 25 29 mpbir x 1 1 0 1 = 0 x
31 24 30 pm3.2i 0 1 𝒫 0 1 x 1 1 0 1 = 0 x
32 eleq1 e = 0 1 e 𝒫 0 1 0 1 𝒫 0 1
33 eqeq1 e = 0 1 e = 0 x 0 1 = 0 x
34 33 rexbidv e = 0 1 x 1 1 e = 0 x x 1 1 0 1 = 0 x
35 32 34 anbi12d e = 0 1 e 𝒫 0 1 x 1 1 e = 0 x 0 1 𝒫 0 1 x 1 1 0 1 = 0 x
36 31 35 mpbiri e = 0 1 e 𝒫 0 1 x 1 1 e = 0 x
37 16 36 impbii e 𝒫 0 1 x 1 1 e = 0 x e = 0 1
38 37 abbii e | e 𝒫 0 1 x 1 1 e = 0 x = e | e = 0 1
39 df-rab e 𝒫 0 1 | x 1 1 e = 0 x = e | e 𝒫 0 1 x 1 1 e = 0 x
40 df-sn 0 1 = e | e = 0 1
41 38 39 40 3eqtr4i e 𝒫 0 1 | x 1 1 e = 0 x = 0 1
42 41 reseq2i I e 𝒫 0 1 | x 1 1 e = 0 x = I 0 1
43 42 opeq2i ef ndx I e 𝒫 0 1 | x 1 1 e = 0 x = ef ndx I 0 1
44 5 43 preq12i Base ndx 0 1 ef ndx I e 𝒫 0 1 | x 1 1 e = 0 x = Base ndx 0 1 ef ndx I 0 1
45 3 44 eqtri Could not format ( StarGr ` 1 ) = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( .ef ` ndx ) , ( _I |` { { 0 , 1 } } ) >. } : No typesetting found for |- ( StarGr ` 1 ) = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( .ef ` ndx ) , ( _I |` { { 0 , 1 } } ) >. } with typecode |-