Metamath Proof Explorer


Theorem sticksstones13

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024)

Ref Expression
Hypotheses sticksstones13.1 φN0
sticksstones13.2 φK0
sticksstones13.3 F=aAj1Kj+l=1jal
sticksstones13.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
sticksstones13.5 A=g|g:1K+10i=1K+1gi=N
sticksstones13.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
Assertion sticksstones13 φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 sticksstones13.1 φN0
2 sticksstones13.2 φK0
3 sticksstones13.3 F=aAj1Kj+l=1jal
4 sticksstones13.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
5 sticksstones13.5 A=g|g:1K+10i=1K+1gi=N
6 sticksstones13.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
7 1 adantr φK=0N0
8 simpr φK=0K=0
9 7 8 3 4 5 6 sticksstones11 φK=0F:A1-1 ontoB
10 1 adantr φKN0
11 simpr φKK
12 10 11 3 4 5 6 sticksstones12 φKF:A1-1 ontoB
13 elnn0 K0KK=0
14 13 biimpi K0KK=0
15 14 orcomd K0K=0K
16 2 15 syl φK=0K
17 9 12 16 mpjaodan φF:A1-1 ontoB