Metamath Proof Explorer


Theorem sticksstones21

Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024)

Ref Expression
Hypotheses sticksstones21.1 φN0
sticksstones21.2 φSFin
sticksstones21.3 φS
sticksstones21.4 A=f|f:S0iSfi=N
Assertion sticksstones21 φA=(N+S-1S1)

Proof

Step Hyp Ref Expression
1 sticksstones21.1 φN0
2 sticksstones21.2 φSFin
3 sticksstones21.3 φS
4 sticksstones21.4 A=f|f:S0iSfi=N
5 hashnncl SFinSS
6 2 5 syl φSS
7 3 6 mpbird φS
8 fveq2 j=kgj=gk
9 8 cbvsumv j=1Sgj=k=1Sgk
10 9 eqeq1i j=1Sgj=Nk=1Sgk=N
11 10 anbi2i g:1S0j=1Sgj=Ng:1S0k=1Sgk=N
12 11 abbii g|g:1S0j=1Sgj=N=g|g:1S0k=1Sgk=N
13 fveq2 i=kfi=fk
14 13 cbvsumv iSfi=kSfk
15 14 eqeq1i iSfi=NkSfk=N
16 15 anbi2i f:S0iSfi=Nf:S0kSfk=N
17 16 abbii f|f:S0iSfi=N=f|f:S0kSfk=N
18 4 17 eqtri A=f|f:S0kSfk=N
19 eqidd φS=S
20 1 2 7 12 18 19 sticksstones20 φA=(N+S-1S1)