| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgdisj.p |  | 
						
							| 2 |  | subgdisj.o |  | 
						
							| 3 |  | subgdisj.z |  | 
						
							| 4 |  | subgdisj.t |  | 
						
							| 5 |  | subgdisj.u |  | 
						
							| 6 |  | subgdisj.i |  | 
						
							| 7 |  | subgdisj.s |  | 
						
							| 8 |  | subgdisj.a |  | 
						
							| 9 |  | subgdisj.c |  | 
						
							| 10 |  | subgdisj.b |  | 
						
							| 11 |  | subgdisj.d |  | 
						
							| 12 |  | subgdisj.j |  | 
						
							| 13 |  | incom |  | 
						
							| 14 | 13 6 | eqtr3id |  | 
						
							| 15 | 3 4 5 7 | cntzrecd |  | 
						
							| 16 | 7 8 | sseldd |  | 
						
							| 17 | 1 3 | cntzi |  | 
						
							| 18 | 16 10 17 | syl2anc |  | 
						
							| 19 | 7 9 | sseldd |  | 
						
							| 20 | 1 3 | cntzi |  | 
						
							| 21 | 19 11 20 | syl2anc |  | 
						
							| 22 | 12 18 21 | 3eqtr3d |  | 
						
							| 23 | 1 2 3 5 4 14 15 10 11 8 9 22 | subgdisj1 |  |