Metamath Proof Explorer


Theorem subggim

Description: Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypothesis subgim.b B=BaseR
Assertion subggim FRGrpIsoSABASubGrpRFASubGrpS

Proof

Step Hyp Ref Expression
1 subgim.b B=BaseR
2 gimghm FRGrpIsoSFRGrpHomS
3 2 adantr FRGrpIsoSABFRGrpHomS
4 ghmima FRGrpHomSASubGrpRFASubGrpS
5 3 4 sylan FRGrpIsoSABASubGrpRFASubGrpS
6 eqid BaseS=BaseS
7 1 6 gimf1o FRGrpIsoSF:B1-1 ontoBaseS
8 f1of1 F:B1-1 ontoBaseSF:B1-1BaseS
9 7 8 syl FRGrpIsoSF:B1-1BaseS
10 f1imacnv F:B1-1BaseSABF-1FA=A
11 9 10 sylan FRGrpIsoSABF-1FA=A
12 11 adantr FRGrpIsoSABFASubGrpSF-1FA=A
13 ghmpreima FRGrpHomSFASubGrpSF-1FASubGrpR
14 3 13 sylan FRGrpIsoSABFASubGrpSF-1FASubGrpR
15 12 14 eqeltrrd FRGrpIsoSABFASubGrpSASubGrpR
16 5 15 impbida FRGrpIsoSABASubGrpRFASubGrpS