Metamath Proof Explorer


Theorem submateqlem2

Description: Lemma for submateq . (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses submateqlem2.n φN
submateqlem2.k φK1N
submateqlem2.m φM1N1
submateqlem2.1 φM<K
Assertion submateqlem2 φM1..^KM1NK

Proof

Step Hyp Ref Expression
1 submateqlem2.n φN
2 submateqlem2.k φK1N
3 submateqlem2.m φM1N1
4 submateqlem2.1 φM<K
5 fz1ssnn 1N1
6 5 3 sselid φM
7 6 nnge1d φ1M
8 7 4 jca φ1MM<K
9 3 elfzelzd φM
10 1zzd φ1
11 2 elfzelzd φK
12 elfzo M1KM1..^K1MM<K
13 9 10 11 12 syl3anc φM1..^K1MM<K
14 8 13 mpbird φM1..^K
15 3 orcd φM1N1M=N
16 nnuz =1
17 1 16 eleqtrdi φN1
18 fzm1 N1M1NM1N1M=N
19 17 18 syl φM1NM1N1M=N
20 15 19 mpbird φM1N
21 6 nnred φM
22 21 4 ltned φMK
23 nelsn MK¬MK
24 22 23 syl φ¬MK
25 20 24 eldifd φM1NK
26 14 25 jca φM1..^KM1NK