Metamath Proof Explorer


Theorem submgmacs

Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypothesis submgmacs.b B=BaseG
Assertion submgmacs GMgmSubMgmGACSB

Proof

Step Hyp Ref Expression
1 submgmacs.b B=BaseG
2 eqid +G=+G
3 1 2 issubmgm GMgmsSubMgmGsBxsysx+Gys
4 velpw s𝒫BsB
5 4 anbi1i s𝒫Bxsysx+GyssBxsysx+Gys
6 3 5 bitr4di GMgmsSubMgmGs𝒫Bxsysx+Gys
7 6 eqabdv GMgmSubMgmG=s|s𝒫Bxsysx+Gys
8 df-rab s𝒫B|xsysx+Gys=s|s𝒫Bxsysx+Gys
9 7 8 eqtr4di GMgmSubMgmG=s𝒫B|xsysx+Gys
10 1 fvexi BV
11 1 2 mgmcl GMgmxByBx+GyB
12 11 3expb GMgmxByBx+GyB
13 12 ralrimivva GMgmxByBx+GyB
14 acsfn2 BVxByBx+GyBs𝒫B|xsysx+GysACSB
15 10 13 14 sylancr GMgms𝒫B|xsysx+GysACSB
16 9 15 eqeltrd GMgmSubMgmGACSB