Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Monoids (extension)
Magma homomorphisms and submagmas
submgmacs
Next ⟩
ismhm0
Metamath Proof Explorer
Ascii
Unicode
Theorem
submgmacs
Description:
Submagmas are an algebraic closure system.
(Contributed by
AV
, 27-Feb-2020)
Ref
Expression
Hypothesis
submgmacs.b
⊢
B
=
Base
G
Assertion
submgmacs
⊢
G
∈
Mgm
→
SubMgm
⁡
G
∈
ACS
⁡
B
Proof
Step
Hyp
Ref
Expression
1
submgmacs.b
⊢
B
=
Base
G
2
eqid
⊢
+
G
=
+
G
3
1
2
issubmgm
⊢
G
∈
Mgm
→
s
∈
SubMgm
⁡
G
↔
s
⊆
B
∧
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
4
velpw
⊢
s
∈
𝒫
B
↔
s
⊆
B
5
4
anbi1i
⊢
s
∈
𝒫
B
∧
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
↔
s
⊆
B
∧
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
6
3
5
bitr4di
⊢
G
∈
Mgm
→
s
∈
SubMgm
⁡
G
↔
s
∈
𝒫
B
∧
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
7
6
abbi2dv
⊢
G
∈
Mgm
→
SubMgm
⁡
G
=
s
|
s
∈
𝒫
B
∧
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
8
df-rab
⊢
s
∈
𝒫
B
|
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
=
s
|
s
∈
𝒫
B
∧
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
9
7
8
eqtr4di
⊢
G
∈
Mgm
→
SubMgm
⁡
G
=
s
∈
𝒫
B
|
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
10
1
fvexi
⊢
B
∈
V
11
1
2
mgmcl
⊢
G
∈
Mgm
∧
x
∈
B
∧
y
∈
B
→
x
+
G
y
∈
B
12
11
3expb
⊢
G
∈
Mgm
∧
x
∈
B
∧
y
∈
B
→
x
+
G
y
∈
B
13
12
ralrimivva
⊢
G
∈
Mgm
→
∀
x
∈
B
∀
y
∈
B
x
+
G
y
∈
B
14
acsfn2
⊢
B
∈
V
∧
∀
x
∈
B
∀
y
∈
B
x
+
G
y
∈
B
→
s
∈
𝒫
B
|
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
∈
ACS
⁡
B
15
10
13
14
sylancr
⊢
G
∈
Mgm
→
s
∈
𝒫
B
|
∀
x
∈
s
∀
y
∈
s
x
+
G
y
∈
s
∈
ACS
⁡
B
16
9
15
eqeltrd
⊢
G
∈
Mgm
→
SubMgm
⁡
G
∈
ACS
⁡
B