Step |
Hyp |
Ref |
Expression |
1 |
|
submgmacs.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
3 |
1 2
|
issubmgm |
⊢ ( 𝐺 ∈ Mgm → ( 𝑠 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
4 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) |
6 |
3 5
|
bitr4di |
⊢ ( 𝐺 ∈ Mgm → ( 𝑠 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
7 |
6
|
abbi2dv |
⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } ) |
8 |
|
df-rab |
⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } |
9 |
7 8
|
eqtr4di |
⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) |
10 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
1 2
|
mgmcl |
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
12 |
11
|
3expb |
⊢ ( ( 𝐺 ∈ Mgm ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
13 |
12
|
ralrimivva |
⊢ ( 𝐺 ∈ Mgm → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
14 |
|
acsfn2 |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
15 |
10 13 14
|
sylancr |
⊢ ( 𝐺 ∈ Mgm → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
16 |
9 15
|
eqeltrd |
⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |