Metamath Proof Explorer


Theorem submodneaddmod

Description: An integer minus B is not itself plus C modulo an integer greater than the sum of B and C . (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion submodneaddmod N A B C 1 B + C B + C < N A + B mod N A C mod N

Proof

Step Hyp Ref Expression
1 simp1 N A B C 1 B + C B + C < N N
2 zaddcl A B A + B
3 2 3adant3 A B C A + B
4 zsubcl A C A C
5 4 3adant2 A B C A C
6 3 5 jca A B C A + B A C
7 6 3ad2ant2 N A B C 1 B + C B + C < N A + B A C
8 zcn A A
9 8 3ad2ant1 A B C A
10 9 3ad2ant2 N A B C 1 B + C B + C < N A
11 zcn B B
12 11 3ad2ant2 A B C B
13 12 3ad2ant2 N A B C 1 B + C B + C < N B
14 zcn C C
15 14 3ad2ant3 A B C C
16 15 3ad2ant2 N A B C 1 B + C B + C < N C
17 10 13 16 pnncand N A B C 1 B + C B + C < N A + B - A C = B + C
18 simpl3l N A B C 1 B + C B + C < N A + B - A C = B + C 1 B + C
19 breq2 A + B - A C = B + C 1 A + B - A C 1 B + C
20 19 adantl N A B C 1 B + C B + C < N A + B - A C = B + C 1 A + B - A C 1 B + C
21 18 20 mpbird N A B C 1 B + C B + C < N A + B - A C = B + C 1 A + B - A C
22 simpl3r N A B C 1 B + C B + C < N A + B - A C = B + C B + C < N
23 breq1 A + B - A C = B + C A + B - A C < N B + C < N
24 23 adantl N A B C 1 B + C B + C < N A + B - A C = B + C A + B - A C < N B + C < N
25 22 24 mpbird N A B C 1 B + C B + C < N A + B - A C = B + C A + B - A C < N
26 21 25 jca N A B C 1 B + C B + C < N A + B - A C = B + C 1 A + B - A C A + B - A C < N
27 17 26 mpdan N A B C 1 B + C B + C < N 1 A + B - A C A + B - A C < N
28 difltmodne N A + B A C 1 A + B - A C A + B - A C < N A + B mod N A C mod N
29 1 7 27 28 syl3anc N A B C 1 B + C B + C < N A + B mod N A C mod N