Metamath Proof Explorer


Theorem subrgsubg

Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Assertion subrgsubg ASubRingRASubGrpR

Proof

Step Hyp Ref Expression
1 subrgrcl ASubRingRRRing
2 ringgrp RRingRGrp
3 1 2 syl ASubRingRRGrp
4 eqid BaseR=BaseR
5 4 subrgss ASubRingRABaseR
6 eqid R𝑠A=R𝑠A
7 6 subrgring ASubRingRR𝑠ARing
8 ringgrp R𝑠ARingR𝑠AGrp
9 7 8 syl ASubRingRR𝑠AGrp
10 4 issubg ASubGrpRRGrpABaseRR𝑠AGrp
11 3 5 9 10 syl3anbrc ASubRingRASubGrpR