Metamath Proof Explorer


Theorem subsq

Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008)

Ref Expression
Assertion subsq ABA2B2=A+BAB

Proof

Step Hyp Ref Expression
1 simpl ABA
2 simpr ABB
3 subcl ABAB
4 1 2 3 adddird ABA+BAB=AAB+BAB
5 subdi AABAAB=AAAB
6 5 3anidm12 ABAAB=AAAB
7 sqval AA2=AA
8 7 adantr ABA2=AA
9 8 oveq1d ABA2AB=AAAB
10 6 9 eqtr4d ABAAB=A2AB
11 2 1 2 subdid ABBAB=BABB
12 mulcom ABAB=BA
13 sqval BB2=BB
14 13 adantl ABB2=BB
15 12 14 oveq12d ABABB2=BABB
16 11 15 eqtr4d ABBAB=ABB2
17 10 16 oveq12d ABAAB+BAB=A2AB+AB-B2
18 sqcl AA2
19 18 adantr ABA2
20 mulcl ABAB
21 sqcl BB2
22 21 adantl ABB2
23 19 20 22 npncand ABA2AB+AB-B2=A2B2
24 4 17 23 3eqtrrd ABA2B2=A+BAB