Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumtp.e | |
|
sumtp.f | |
||
sumtp.g | |
||
sumtp.c | |
||
sumtp.v | |
||
sumtp.1 | |
||
sumtp.2 | |
||
sumtp.3 | |
||
Assertion | sumtp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumtp.e | |
|
2 | sumtp.f | |
|
3 | sumtp.g | |
|
4 | sumtp.c | |
|
5 | sumtp.v | |
|
6 | sumtp.1 | |
|
7 | sumtp.2 | |
|
8 | sumtp.3 | |
|
9 | 7 | necomd | |
10 | 8 | necomd | |
11 | 9 10 | nelprd | |
12 | disjsn | |
|
13 | 11 12 | sylibr | |
14 | df-tp | |
|
15 | 14 | a1i | |
16 | tpfi | |
|
17 | 16 | a1i | |
18 | 1 | eleq1d | |
19 | 2 | eleq1d | |
20 | 3 | eleq1d | |
21 | 18 19 20 | raltpg | |
22 | 5 21 | syl | |
23 | 4 22 | mpbird | |
24 | 23 | r19.21bi | |
25 | 13 15 17 24 | fsumsplit | |
26 | 3simpa | |
|
27 | 4 26 | syl | |
28 | 3simpa | |
|
29 | 5 28 | syl | |
30 | 1 2 27 29 6 | sumpr | |
31 | 5 | simp3d | |
32 | 4 | simp3d | |
33 | 3 | sumsn | |
34 | 31 32 33 | syl2anc | |
35 | 30 34 | oveq12d | |
36 | 25 35 | eqtrd | |