| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumtp.e |  | 
						
							| 2 |  | sumtp.f |  | 
						
							| 3 |  | sumtp.g |  | 
						
							| 4 |  | sumtp.c |  | 
						
							| 5 |  | sumtp.v |  | 
						
							| 6 |  | sumtp.1 |  | 
						
							| 7 |  | sumtp.2 |  | 
						
							| 8 |  | sumtp.3 |  | 
						
							| 9 | 7 | necomd |  | 
						
							| 10 | 8 | necomd |  | 
						
							| 11 | 9 10 | nelprd |  | 
						
							| 12 |  | disjsn |  | 
						
							| 13 | 11 12 | sylibr |  | 
						
							| 14 |  | df-tp |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 |  | tpfi |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 | 1 | eleq1d |  | 
						
							| 19 | 2 | eleq1d |  | 
						
							| 20 | 3 | eleq1d |  | 
						
							| 21 | 18 19 20 | raltpg |  | 
						
							| 22 | 5 21 | syl |  | 
						
							| 23 | 4 22 | mpbird |  | 
						
							| 24 | 23 | r19.21bi |  | 
						
							| 25 | 13 15 17 24 | fsumsplit |  | 
						
							| 26 |  | 3simpa |  | 
						
							| 27 | 4 26 | syl |  | 
						
							| 28 |  | 3simpa |  | 
						
							| 29 | 5 28 | syl |  | 
						
							| 30 | 1 2 27 29 6 | sumpr |  | 
						
							| 31 | 5 | simp3d |  | 
						
							| 32 | 4 | simp3d |  | 
						
							| 33 | 3 | sumsn |  | 
						
							| 34 | 31 32 33 | syl2anc |  | 
						
							| 35 | 30 34 | oveq12d |  | 
						
							| 36 | 25 35 | eqtrd |  |