Metamath Proof Explorer


Theorem sumtp

Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020)

Ref Expression
Hypotheses sumtp.e k=AD=E
sumtp.f k=BD=F
sumtp.g k=CD=G
sumtp.c φEFG
sumtp.v φAVBWCX
sumtp.1 φAB
sumtp.2 φAC
sumtp.3 φBC
Assertion sumtp φkABCD=E+F+G

Proof

Step Hyp Ref Expression
1 sumtp.e k=AD=E
2 sumtp.f k=BD=F
3 sumtp.g k=CD=G
4 sumtp.c φEFG
5 sumtp.v φAVBWCX
6 sumtp.1 φAB
7 sumtp.2 φAC
8 sumtp.3 φBC
9 7 necomd φCA
10 8 necomd φCB
11 9 10 nelprd φ¬CAB
12 disjsn ABC=¬CAB
13 11 12 sylibr φABC=
14 df-tp ABC=ABC
15 14 a1i φABC=ABC
16 tpfi ABCFin
17 16 a1i φABCFin
18 1 eleq1d k=ADE
19 2 eleq1d k=BDF
20 3 eleq1d k=CDG
21 18 19 20 raltpg AVBWCXkABCDEFG
22 5 21 syl φkABCDEFG
23 4 22 mpbird φkABCD
24 23 r19.21bi φkABCD
25 13 15 17 24 fsumsplit φkABCD=kABD+kCD
26 3simpa EFGEF
27 4 26 syl φEF
28 3simpa AVBWCXAVBW
29 5 28 syl φAVBW
30 1 2 27 29 6 sumpr φkABD=E+F
31 5 simp3d φCX
32 4 simp3d φG
33 3 sumsn CXGkCD=G
34 31 32 33 syl2anc φkCD=G
35 30 34 oveq12d φkABD+kCD=E+F+G
36 25 35 eqtrd φkABCD=E+F+G