Metamath Proof Explorer


Theorem supicclub2

Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)

Ref Expression
Hypotheses supicc.1 φ B
supicc.2 φ C
supicc.3 φ A B C
supicc.4 φ A
supiccub.1 φ D A
supicclub2.1 φ z A z D
Assertion supicclub2 φ sup A < D

Proof

Step Hyp Ref Expression
1 supicc.1 φ B
2 supicc.2 φ C
3 supicc.3 φ A B C
4 supicc.4 φ A
5 supiccub.1 φ D A
6 supicclub2.1 φ z A z D
7 iccssxr B C *
8 1 2 3 4 supicc φ sup A < B C
9 7 8 sseldi φ sup A < *
10 3 7 sstrdi φ A *
11 10 5 sseldd φ D *
12 10 sselda φ z A z *
13 11 adantr φ z A D *
14 12 13 xrlenltd φ z A z D ¬ D < z
15 6 14 mpbid φ z A ¬ D < z
16 15 nrexdv φ ¬ z A D < z
17 1 2 3 4 5 supicclub φ D < sup A < z A D < z
18 16 17 mtbird φ ¬ D < sup A <
19 9 11 18 xrnltled φ sup A < D