Metamath Proof Explorer


Theorem suprlubrd

Description: Natural deduction form of specialized suprlub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprlubrd.1 φ A
suprlubrd.2 φ A
suprlubrd.3 φ x y A y x
suprlubrd.4 φ B
suprlubrd.5 φ z A B < z
Assertion suprlubrd φ B < sup A <

Proof

Step Hyp Ref Expression
1 suprlubrd.1 φ A
2 suprlubrd.2 φ A
3 suprlubrd.3 φ x y A y x
4 suprlubrd.4 φ B
5 suprlubrd.5 φ z A B < z
6 suprlub A A x y A y x B B < sup A < z A B < z
7 1 2 3 4 6 syl31anc φ B < sup A < z A B < z
8 7 bicomd φ z A B < z B < sup A <
9 8 biimpd φ z A B < z B < sup A <
10 9 imp φ z A B < z B < sup A <
11 5 10 mpdan φ B < sup A <