Metamath Proof Explorer


Theorem supxrcl

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005)

Ref Expression
Assertion supxrcl A * sup A * < *

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 1 a1i A * < Or *
3 xrsupss A * x * y A ¬ x < y y * y < x z A y < z
4 2 3 supcl A * sup A * < *