Metamath Proof Explorer


Theorem symgextfv

Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextfv KNZSXNKEX=ZX

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 eldifi XNKXN
4 fvexd KNZSZXV
5 ifexg KNZXVifX=KKZXV
6 4 5 syldan KNZSifX=KKZXV
7 eqeq1 x=Xx=KX=K
8 fveq2 x=XZx=ZX
9 7 8 ifbieq2d x=Xifx=KKZx=ifX=KKZX
10 9 2 fvmptg XNifX=KKZXVEX=ifX=KKZX
11 3 6 10 syl2anr KNZSXNKEX=ifX=KKZX
12 eldifsnneq XNK¬X=K
13 12 adantl KNZSXNK¬X=K
14 13 iffalsed KNZSXNKifX=KKZX=ZX
15 11 14 eqtrd KNZSXNKEX=ZX
16 15 ex KNZSXNKEX=ZX