Metamath Proof Explorer


Theorem symgmatr01

Description: Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses symgmatr01.p P=BaseSymGrpN
symgmatr01.0 0˙=0R
symgmatr01.1 1˙=1R
Assertion symgmatr01 KNLNQPqP|qK=LkNkiN,jNifi=Kifj=L1˙0˙iMjQk=0˙

Proof

Step Hyp Ref Expression
1 symgmatr01.p P=BaseSymGrpN
2 symgmatr01.0 0˙=0R
3 symgmatr01.1 1˙=1R
4 1 symgmatr01lem KNLNQPqP|qK=LkNifk=KifQk=L1˙0˙kMQk=0˙
5 4 imp KNLNQPqP|qK=LkNifk=KifQk=L1˙0˙kMQk=0˙
6 eqidd KNLNQPqP|qK=LkNiN,jNifi=Kifj=L1˙0˙iMj=iN,jNifi=Kifj=L1˙0˙iMj
7 eqeq1 i=ki=Kk=K
8 7 adantr i=kj=Qki=Kk=K
9 eqeq1 j=Qkj=LQk=L
10 9 adantl i=kj=Qkj=LQk=L
11 10 ifbid i=kj=Qkifj=L1˙0˙=ifQk=L1˙0˙
12 oveq12 i=kj=QkiMj=kMQk
13 8 11 12 ifbieq12d i=kj=Qkifi=Kifj=L1˙0˙iMj=ifk=KifQk=L1˙0˙kMQk
14 13 adantl KNLNQPqP|qK=LkNi=kj=Qkifi=Kifj=L1˙0˙iMj=ifk=KifQk=L1˙0˙kMQk
15 simpr KNLNQPqP|qK=LkNkN
16 eldifi QPqP|qK=LQP
17 eqid SymGrpN=SymGrpN
18 17 1 symgfv QPkNQkN
19 18 ex QPkNQkN
20 16 19 syl QPqP|qK=LkNQkN
21 20 adantl KNLNQPqP|qK=LkNQkN
22 21 imp KNLNQPqP|qK=LkNQkN
23 3 fvexi 1˙V
24 2 fvexi 0˙V
25 23 24 ifex ifQk=L1˙0˙V
26 ovex kMQkV
27 25 26 ifex ifk=KifQk=L1˙0˙kMQkV
28 27 a1i KNLNQPqP|qK=LkNifk=KifQk=L1˙0˙kMQkV
29 6 14 15 22 28 ovmpod KNLNQPqP|qK=LkNkiN,jNifi=Kifj=L1˙0˙iMjQk=ifk=KifQk=L1˙0˙kMQk
30 29 eqeq1d KNLNQPqP|qK=LkNkiN,jNifi=Kifj=L1˙0˙iMjQk=0˙ifk=KifQk=L1˙0˙kMQk=0˙
31 30 rexbidva KNLNQPqP|qK=LkNkiN,jNifi=Kifj=L1˙0˙iMjQk=0˙kNifk=KifQk=L1˙0˙kMQk=0˙
32 5 31 mpbird KNLNQPqP|qK=LkNkiN,jNifi=Kifj=L1˙0˙iMjQk=0˙
33 32 ex KNLNQPqP|qK=LkNkiN,jNifi=Kifj=L1˙0˙iMjQk=0˙