Metamath Proof Explorer


Theorem tanval

Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion tanval AcosA0tanA=sinAcosA

Proof

Step Hyp Ref Expression
1 simpl AcosA0A
2 coscl AcosA
3 2 anim1i AcosA0cosAcosA0
4 eldifsn cosA0cosAcosA0
5 3 4 sylibr AcosA0cosA0
6 cosf cos:
7 ffn cos:cosFn
8 elpreima cosFnAcos-10AcosA0
9 6 7 8 mp2b Acos-10AcosA0
10 1 5 9 sylanbrc AcosA0Acos-10
11 fveq2 x=Asinx=sinA
12 fveq2 x=Acosx=cosA
13 11 12 oveq12d x=Asinxcosx=sinAcosA
14 df-tan tan=xcos-10sinxcosx
15 ovex sinAcosAV
16 13 14 15 fvmpt Acos-10tanA=sinAcosA
17 10 16 syl AcosA0tanA=sinAcosA