Metamath Proof Explorer


Theorem telgsumfz

Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses telgsumfz.b B = Base G
telgsumfz.g φ G Abel
telgsumfz.m - ˙ = - G
telgsumfz.n φ N M
telgsumfz.f φ k M N + 1 A B
telgsumfz.l k = i A = L
telgsumfz.c k = i + 1 A = C
telgsumfz.d k = M A = D
telgsumfz.e k = N + 1 A = E
Assertion telgsumfz φ G i = M N L - ˙ C = D - ˙ E

Proof

Step Hyp Ref Expression
1 telgsumfz.b B = Base G
2 telgsumfz.g φ G Abel
3 telgsumfz.m - ˙ = - G
4 telgsumfz.n φ N M
5 telgsumfz.f φ k M N + 1 A B
6 telgsumfz.l k = i A = L
7 telgsumfz.c k = i + 1 A = C
8 telgsumfz.d k = M A = D
9 telgsumfz.e k = N + 1 A = E
10 simpr φ i M N i M N
11 6 adantl φ i M N k = i A = L
12 10 11 csbied φ i M N i / k A = L
13 12 eqcomd φ i M N L = i / k A
14 ovexd φ i M N i + 1 V
15 7 adantl φ i M N k = i + 1 A = C
16 14 15 csbied φ i M N i + 1 / k A = C
17 16 eqcomd φ i M N C = i + 1 / k A
18 13 17 oveq12d φ i M N L - ˙ C = i / k A - ˙ i + 1 / k A
19 18 mpteq2dva φ i M N L - ˙ C = i M N i / k A - ˙ i + 1 / k A
20 19 oveq2d φ G i = M N L - ˙ C = G i = M N i / k A - ˙ i + 1 / k A
21 1 2 3 4 5 telgsumfzs φ G i = M N i / k A - ˙ i + 1 / k A = M / k A - ˙ N + 1 / k A
22 4 elfvexd φ M V
23 8 adantl φ k = M A = D
24 22 23 csbied φ M / k A = D
25 ovexd φ N + 1 V
26 9 adantl φ k = N + 1 A = E
27 25 26 csbied φ N + 1 / k A = E
28 24 27 oveq12d φ M / k A - ˙ N + 1 / k A = D - ˙ E
29 20 21 28 3eqtrd φ G i = M N L - ˙ C = D - ˙ E