Metamath Proof Explorer


Theorem tfrlem15

Description: Lemma for transfinite recursion. Without assuming ax-rep , we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem15 BOnBdomrecsFrecsFBV

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 1 tfrlem9a BdomrecsFrecsFBV
3 2 adantl BOnBdomrecsFrecsFBV
4 1 tfrlem13 ¬recsFV
5 simpr BOnrecsFBVrecsFBV
6 resss recsFBrecsF
7 6 a1i domrecsFBrecsFBrecsF
8 1 tfrlem6 RelrecsF
9 resdm RelrecsFrecsFdomrecsF=recsF
10 8 9 ax-mp recsFdomrecsF=recsF
11 ssres2 domrecsFBrecsFdomrecsFrecsFB
12 10 11 eqsstrrid domrecsFBrecsFrecsFB
13 7 12 eqssd domrecsFBrecsFB=recsF
14 13 eleq1d domrecsFBrecsFBVrecsFV
15 5 14 syl5ibcom BOnrecsFBVdomrecsFBrecsFV
16 4 15 mtoi BOnrecsFBV¬domrecsFB
17 1 tfrlem8 OrddomrecsF
18 eloni BOnOrdB
19 18 adantr BOnrecsFBVOrdB
20 ordtri1 OrddomrecsFOrdBdomrecsFB¬BdomrecsF
21 20 con2bid OrddomrecsFOrdBBdomrecsF¬domrecsFB
22 17 19 21 sylancr BOnrecsFBVBdomrecsF¬domrecsFB
23 16 22 mpbird BOnrecsFBVBdomrecsF
24 3 23 impbida BOnBdomrecsFrecsFBV